Metastables as a Probe for Low-Temperature Plasmas Correlation between N* and n_e in Ar

Toshiaki Makabe Keio University <u>makabe@keio.jp</u>

Large number of experimental and theoretical studies of neutral metastables in argon have been performed in order to explore and clarify the macroscopic and the microscopic characteristics of low-temperature plasma sources for over three decades. The accumulated set of data comprising number density and temperature of the metastable, N^* and T_g , as well as the electron density n_e in various kinds of low-temperature plasmas over a wide range of external parameters enable the analysis and review of the inner plasma parameter in the form of the relative densities, N^*/N_g and n_e/N_g normalized by the feed gas density N_g , based on a simple theoretical rate equation in real space,

$$\frac{\partial}{\partial t}N^{*}(t) = k_{m}n_{e}N_{g} - k_{Teq}n_{e}N^{*} - k_{mp}N^{*}N^{*} - k_{3sq}N^{*}N_{g}^{2} - k_{imp}N_{imp}N^{*} - \frac{D_{m}}{\Lambda^{2}}N^{*}$$

Indispensable is the development of the non-invasive diagnostics for metastables, and of the tunable diode laser in a visible-near infrared domain ($\lambda < 1\mu m$). It enabled optical absorption spectroscopy for measurements of N^* and T_g of the metastable in Ar. A reasonable cross-correlation in the above equation,

$$rac{n_e}{N_g} = -rac{k_{mp}}{k_{Teq}}rac{N^*}{N_g} - rac{k_{mp}}{k_{Teq}}igg(rac{k_m}{k_{Teq}} + rac{I_d}{k_{mp}}igg)igg(1 + rac{k_m}{k_{Teq}}rac{1}{(rac{N^*}{N_g} - rac{k_m}{k_{Teq}})}igg)$$

is found between N^*/N_g and n_e/N_g during a steady-state under condition without threebody collision and diffusion, i.e., $I_d = 0$. A strong positive correlation between N^*/N_g and n_e/N_g in the present analysis demonstrates that the metastable density N^* can be an indirect indicator of the plasma density n_e in a low-temperature plasma. It will be noted, in addition, that the highsensitivity of electrons to the surrounding local field makes it difficult to observe the local density and its distribution in a lowtemperature plasma even though there exist several traditional methods to measure n_e . The details of the present result are published as the review article [1].

Figure: Example in micro hollow-cathode discharge under various external parameters.

References

[1] T. Makabe, J. Phys. D, 52, (2019), 213002 and 52, (2019), 259601.