The Gas-Liquid Interface: Kinetic and Fluid Modelling of Charged Particle Transport

 N. Garland^{1,2}, D. Muccignat¹, G. Boyle^{1,3}, D. Cocks^{1,4}, I. Simonović⁵, D. Bošnjaković⁵, M. J. Brunger⁶, S. Dujko⁷, Z. Lj. Petrović⁷, and R.D. White¹
¹College of Science and Engineering, James Cook University, Townsville, Australia ²DESY, Hamburg, Germany
³Los Alamos National Laboratory, Los Alamos, USA
⁴ Research School of Physical Sciences, Australian National University, Canberra, Australia ⁵Institute of Physics, University of Belgrade, Pregrevica, Belgrade, Serbia

Institute of Physics, University of Beigrade, Pregrevica, Beigrade, Serbia

⁶College of Science and Engineering, Flinders University, Adelaide, Australia ⁷Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia

ronald.white@jcu.edu.au

Modelling of electron transport in the vicinity of the plasma-liquid requires an accurate treatment of electron transport in the gaseous and soft-condensed phases, together with an understanding of the electron transport across the gas-liquid interface. In this presentation, we present simulations which have informed the design of a new experiment which adapts an existing electron-gas phase scattering experiment (e2e) to consider electron scattering from a liquid micro-jet. The results highlight that electron-scattering information (effective cross-sections) can be obtained from the experiment for both the bulk liquid and from the interface. In addition, we present progress on an ab-initio formalism for electron transport in liquids through appropriate generalisations of Boltzmann's equation and associated higher order fluid models to account for spatio-temporal scattering correlations, screening of the electron potential and the effects of (self-) trapping. Application is considered for various atomic liquids as a starting benchmark to consider more complex polar liquids [1] as well as the non-local nature of electron transport in liquids and gas-liquid interfaces [2,3]. Propagation of ionization fronts between the gas and liquid phases are considered.

References

- [1] R. D. White, et al., Plasma Sources Sci. Technol., 27, (2018), 053001.
- [2] N. A. Garland, et al., Plasma Sources Sci. Technol., 27, (2018), 024002.
- [3] N. A. Garland, et al., Plasma Sources Sci. Technol., 26, (2017), 075003.